跳到主要内容

指标数据查看的统一适配

在上一篇章节中,讲解了在实时查询采集后的指标数据功能时,时间查询时不同时间维度的执行流程。而本篇章节,将讲解如何查询指标数据

API入口

@Operation(summary  = "查询指标数据")
@PostMapping(value = "/data/query")
public ApiResponse<ReportVo> dataQuery(@Valid @RequestBody QueryGatherDataDto queryDataDto) {
return ApiResponse.ok(collectService.dataQuery(queryDataDto));
}

QueryGatherDataDto入参结构

@Data
@Schema(title="QueryGatherDataDto", description ="QueryGatherDataDto")
public class QueryGatherDataDto {

@Schema(name ="ruleId", type ="Long",description="规则id",requiredMode= RequiredMode.REQUIRED)
@NotNull
private Long ruleId;

@Schema(name ="videoTypeId", type ="Integer",description="视频分类id",requiredMode= RequiredMode.REQUIRED)
@NotNull
private Integer videoTypeId;

@Schema(name ="dateType", type ="Long",description="日期类型",requiredMode= RequiredMode.REQUIRED)
@NotNull
private Integer dateType;

@Schema(name ="startTime", type ="Date",description="开始时间",requiredMode= RequiredMode.REQUIRED)
@JsonFormat(pattern = "yyyy-MM-dd")
@NotNull
private Date startTime;

@Schema(name ="endTime", type ="Date",description="结束时间",requiredMode= RequiredMode.REQUIRED)
@JsonFormat(pattern = "yyyy-MM-dd")
@NotNull
private Date endTime;
}

方法接收一个QueryGatherDataDto对象,包含以下关键字段:

  • ruleId:规则ID,用于确定查询规则
  • videoTypeId:视频分类ID,指定要查询的视频分类
  • dateType:日期类型(1-天,2-周,3-月,4-年)
  • startTime:开始时间
  • endTime:结束时间

参数并不是很多,但是可以把所有视频分类和不同时间的维度都可以查询,有此可见此流程的扩展性是非常高的

指标数据查询

public ReportVo dataQuery(QueryGatherDataDto queryGatherDataDto){
ReportVo reportVo = new ReportVo();
QueryGatherDataVo queryGatherDataVo = new QueryGatherDataVo();
//日期类型
DateType dateType = Optional.ofNullable(DateType.getRc(queryGatherDataDto.getDateType()))
.orElseThrow(() -> new DockDataCenterFrameException("Invalid date type: " + queryGatherDataDto.getDateType()));
//获取维度信息
DimensionGather dimensionGather = dimensionGatherService.getDimensionByRuleIdAndTableName(queryGatherDataDto.getRuleId(),
TableName.VIDEO_TYPE.getValue());
if (Objects.isNull(dimensionGather)) {
return reportVo;
}
Map<String, Object> params = Map.of(SqlParameterConstant.VIDEO_TYPE_ID, queryGatherDataDto.getVideoTypeId());
//从库中查询视频类型
List<VideoType> videoTypeList = agilityDataHandler.list(dimensionGather.getCollectDetail(),
dimensionGather.getCollectSourceName(), VideoType.class, params);
if (CollectionUtil.isEmpty(videoTypeList)) {
return reportVo;
}
VideoType videoType = videoTypeList.get(0);

//视频维度
VideoDimensionType videoDimensionType = Optional.ofNullable(VideoDimensionType.getByCode(videoType.getCategoryLevel()))
.orElseThrow(() -> new DockDataCenterFrameException(BaseCode.VIDEO_DIMENSION_TYPE_NOT_EXIST));
//根据传入的视频维度进行降级
//如果传入是parent_video_type,那么统计的就是这个parent_video_type下所有的video_type
//如果传入是video_type,那么统计的就是这个video_type下所有的video
//所以将传入视频维度进行降一级进行查询统计
VideoDimensionType downVideoDimensionType = VideoDimensionFunc.downGradeVideoDimension(videoDimensionType);
//构建查询需要的参数
QueryDataTransfers queryDataTransfers = getQueryDataTransfers(queryGatherDataDto, downVideoDimensionType, dateType);
QueryDataExecuteTransfers queryDataExecuteTransfers = new QueryDataExecuteTransfers();
queryDataExecuteTransfers.setAccumulateColumnName(videoType.getName());
queryDataTransfers.setQueryDataExecuteTransfers(queryDataExecuteTransfers);

ParamTransfers paramTransfers = new ParamTransfers();
paramTransfers.setRuleId(queryGatherDataDto.getRuleId());
paramTransfers.setRuleType(RuleType.QUERY);
paramTransfers.setQueryDataTransfers(queryDataTransfers);

RuleHandleOutput ruleHandleOutput = ruleHandler.handle(paramTransfers);
if (Objects.isNull(ruleHandleOutput.getReportVo())) {
return reportVo;
}
reportVo = ruleHandleOutput.getReportVo();
reportVo.setTotal(Optional.ofNullable(reportVo.getRowDataVoList()).map(List::size).orElseGet(()->0));
return reportVo;
}

详细执行流程

第一阶段:初始化和参数验证

public ReportVo dataQuery(QueryGatherDataDto queryGatherDataDto){
ReportVo reportVo = new ReportVo();
QueryGatherDataVo queryGatherDataVo = new QueryGatherDataVo();

方法开始时创建了两个核心对象:

  • ReportVo:最终返回的报表数据对象
  • QueryGatherDataVo:查询数据视图对象(在当前实现中未使用)

第二阶段:日期类型解析和验证

DateType dateType = Optional.ofNullable(DateType.getRc(queryGatherDataDto.getDateType()))
.orElseThrow(() -> new DockDataCenterFrameException("Invalid date type: " + queryGatherDataDto.getDateType()));
  1. 通过DateType.getRc()方法将整数类型的日期类型转换为枚举对象
  2. DateType枚举包含四种类型:
    • DAY(1,"day","天")
    • WEEK(2,"week","周")
    • MONTH(3,"month","月")
    • YEAR(4,"year","年")
  3. 如果日期类型无效,抛出DockDataCenterFrameException异常

第三阶段:维度信息获取

DimensionGather dimensionGather = dimensionGatherService.getDimensionByRuleIdAndTableName(queryGatherDataDto.getRuleId(),
TableName.VIDEO_TYPE.getValue());
if (Objects.isNull(dimensionGather)) {
return reportVo;
}
  1. 根据规则ID和表名(VIDEO_TYPE)查询维度采集配置
  2. DimensionGather实体包含:
    • collectType:采集方式(1-SQL查询,2-接口调用)
    • collectDetail:具体的采集实现(SQL脚本或URL)
    • collectSourceName:数据源名称
    • tableName:表名
  3. 如果找不到维度配置,直接返回空的报表对象

第四阶段:视频类型数据查询